Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice.

نویسندگان

  • Benjamin Lee
  • Keven M Robinson
  • Kevin J McHugh
  • Erich V Scheller
  • Sivanarayana Mandalapu
  • Chen Chen
  • Y Peter Di
  • Michelle E Clay
  • Richard I Enelow
  • Patricia J Dubin
  • John F Alcorn
چکیده

Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria

Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host de...

متن کامل

Type I Interferon Production Enhances Susceptibility to Listeria monocytogenes Infection

Numerous bacterial products such as lipopolysaccharide potently induce type I interferons (IFNs); however, the contribution of this innate response to host defense against bacterial infection remains unclear. Although mice deficient in either IFN regulatory factor (IRF)3 or the type I IFN receptor (IFNAR)1 are highly susceptible to viral infection, we show that these mice exhibit a profound res...

متن کامل

TIR-domain-containing adaptor-inducing interferon-β (TRIF) mediates antibacterial defense during gram-negative pneumonia by inducing Interferon-γ

Klebsiella pneumoniae is an important cause of gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during Klebsiella pneumonia. We here show that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-γ production in the lungs. IFN-γ pr...

متن کامل

ATF3 confers resistance to pneumococcal infection through positive regulation of cytokine production.

BACKGROUND Activating transcription factor-3 (ATF3) is known as a suppressor of cytokine production after exposure to lipopolysaccharide or during gram-negative bacterial infection. However, the mechanism by which ATF3 regulates innate immunity against gram-positive bacterial infection, particularly Streptococcus pneumoniae, remains unknown. METHODS The wild-type and ATF3 knock-out (KO) mice ...

متن کامل

TIR-Domain-Containing Adaptor-Inducing Interferon-β (TRIF) Mediates Antibacterial Defense during Gram-Negative Pneumonia by Inducing Interferon-x03B3.

Klebsiella pneumoniae is an important cause of Gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during Klebsiella pneumonia. We show here that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-x03B3; production in the lungs. IFN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 309 2  شماره 

صفحات  -

تاریخ انتشار 2015